Convergent Semi-Lagrangian Methods for the Monge-Ampère Equation on Unstructured Grids
نویسندگان
چکیده
This paper is concerned with developing and analyzing convergent semi-Lagrangian methods for the fully nonlinear elliptic Monge–Ampère equation on general triangular grids. This is done by establishing an equivalent (in the viscosity sense) Hamilton–Jacobi–Bellman formulation of the Monge–Ampère equation. A significant benefit of the reformulation is the removal of the convexity constraint from the admissible space as convexity becomes a built-in property of the new formulation. Moreover, this new approach allows one to tap the wealthy numerical methods, such as semi-Lagrangian schemes, for Hamilton–Jacobi–Bellman equations to solve Monge–Ampère-type equations. It is proved that the considered numerical methods are monotone, pointwise consistent, and uniformly stable. Consequently, its solutions converge uniformly to the unique convex viscosity solution of the Monge–Ampère Dirichlet problem. A superlinearly convergent Howard’s algorithm, which is a Newton-type method, is utilized as the nonlinear solver to take advantage of the monotonicity of the scheme. Numerical experiments are also presented to gauge the performance of the proposed numerical method and the nonlinear solver.
منابع مشابه
Numerical solution of the second boundary value problem for the Elliptic Monge-Ampère equation
This paper introduces a numerical method for the solution of the nonlinear elliptic Monge-Ampère equation. The boundary conditions correspond to the optimal transportation of measures supported on two domains, where one of these sets is convex. The new challenge is implementing the boundary conditions, which are implicit and non-local. These boundary conditions are reformulated as a nonlinear H...
متن کاملAnalysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation
This paper develops and analyzes finite element Galerkin and spectral Galerkin methods for approximating viscosity solutions of the fully nonlinear Monge-Ampère equation det(D2u0) = f (> 0) based on the vanishing moment method which was developed by the authors in [17, 15]. In this approach, the Monge-Ampère equation is approximated by the fourth order quasilinear equation −ε∆2uε + det D2uε = f...
متن کاملSome Rigidity Results Related to Monge-ampère Functions
The space of Monge-Ampère functions, introduced by J. H. G. Fu in [7, 8] is a space of rather rough functions in which the map u 7→ Det D is well-defined and weakly continuous with respect to a natural notion of weak convergence. We prove a rigidity theorem for Lagrangian integral currents that allows us to extend the original definition of Monge-Ampère functions given in [7]. We also prove tha...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملContinuity Estimates for the Monge-Ampère Equation
In this paper, we study the regularity of solutions to the Monge-Ampère equation. We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a unified treatment for the continuity estimates of the second derivatives. As an application we show the local existence of continuous solutions to the semi-geostrophic equation arising in meteorology.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2017